[rfk-dev] spectrum goodness (first release)

Matt DeMoss mdemoss@uark.edu
Mon, 31 Mar 2003 13:32:11 -0600


This is a multi-part message in MIME format.

--Boundary_(ID_W+IpNlhB8Ow38HdfGtNa9w)
Content-type: text/plain; charset=Windows-1252
Content-transfer-encoding: 7BIT

This is the DOS version.

----- Original Message ----- 
From: Peter Gordon 
To: rfk-dev@robotfindskitten.org 
Sent: Monday, March 31, 2003 7:41 AM
Subject: [rfk-dev] spectrum goodness (first release)


Hi,

> a java applet, screenshots, and beta2 download are now available at

Looks good. I was wondering; in lots of recent versions the finding of kitten
is accompanied by the appearance of love hearts, but on the screenshots of
older versions this doesn't appear to be the case (correct me if i'm wrong,
i've not seen the DOS or POSIX versions myself). Does mean that the robots
love for kitten (and vice versa) is a recent development?

Could it be that the robot has been finding kitten for so long, and in so many
different environments now that it has fallen in love with kitten? or have
they always loved each other but only recently found the confidence to
express that to the outside world? indeed, is the robots whole motivation to
find kitten the need to be reunited with a loved one?

Is the world ready for the love that a robot holds for kitten?

Food for thought...

Cheers,
Pete



_______________________________________________
rfk-dev mailing list
rfk-dev@robotfindskitten.org
http://robotfindskitten.org/cgi-bin/mailman/listinfo/rfk-dev

--Boundary_(ID_W+IpNlhB8Ow38HdfGtNa9w)
Content-type: image/png; name=Clipboard01.png
Content-transfer-encoding: base64
Content-disposition: attachment; filename=Clipboard01.png

iVBORw0KGgoAAAANSUhEUgAAAowAAAFSCAIAAAD3jRlDAAAdZElEQVR42u3deXwU9f3H8c9AuIxg
hCBXEiAnCAkhQJBDjCCaIAgeFChorajV9me1am2rrV2rtrbWqq1XW60XiAhWbsKhRk4h4UoIBBKu
hCNCAoHcCXZ+fwxZNnvMzm42yWTzej54hNm5dva7x3s/35mdUc6fyxcAAGAaV10dpg0EiEiXoFBa
BAAAk1BV9fOF/9q8NT1Au529ZxuNAgCAqQRYh3r2CqI5AABodoWnSuxDWkTeT329ae5eEUX7T29q
3Y36k5yPcjnVfo3O71JRdKfWn8nlnSu6U53/b+QxKPY3FBetc3lTdac6eziKB09CvYehiF6r6LSZ
4vrxefzAbNpF0X3RuXzF6S3spsk9aGUjLym3G2vkwei9FZy/MN2++vTeQbrvL/eNa/Dto7h7cznf
Sv0nTDH+ZOu8D/XvRvHuWXLXKoruNioGl3B4ODofkXpvLv1Xs+5LwGg7GvnMrde6rjdIUUye0NE9
Eq3DbfjCAgCAOQXQBACA1mZU7N3GZ378sQf+9tq/PZp/+txxXtyLthQhDQBo7S6UFBiZbd2a1d7N
35ClCGkAQGtXW1PRqPM3ZCn3Ia2qau3Ftqq7VSgiAW2/b9NG4fkGAMCH9EL6v5uvqe04rF2btqrq
JKnbBbRVVWnTVmlbW1pbljl64KlrurenQQEAaIqQLuh2x8XgfvK/750V2TLx2s5lNUpQ++9H5i76
eGfU1vQDUycFO13PxJGzovsldOoQWFh0bO23n5w+a99BP/n6+2L6DXvj0yeraytF5PG739DGV1aX
Hzy268vtn/rkoY4fMSMqLL5jh8DvivO/3L7wzLnjnq4hefQ9UWFD//n50zW1lY30fNx83ZzI0Pj3
lvy2prZKZ7Zbr38gtEf06bMF1bWV3YNCPlhusZ16U+LsiNAh7y/7vdOVTBo7Nzgo5KOVfzDcbrMi
QuI+Wv5czcUqEbn/9j9ZJ10oK845mp6Vt0G72T6g45j4aeEhcSJy+HhW+r415ZXnROS+qS/aLnLy
zKEtmcvqvup1HBM/tX+fWBE5ciIrY9/assoSEbn3tuf1t6q6puLoyexvs5YbfBRDB0yIjbz+45UW
VzPMufX3tjfnrXpu/Ig5vbtHrNz0r3MXCkXk6i49J4198FTRoa/S54vI7JRnbef/ZPXzfJoAfi+4
xwCdqUXf5TRpSMep6YU7P2jT1nl9fHifqCKnRfLVivNlPTupzru7fzbjZRH5eOVLF8qKJ4+bG9M3
wTGkDxzbFdNvWHTfhKy8zdaRf/v4/zq06zT71qcenv7ntxf9qoGP8yd3/klEFqT+9UL52ZQx90aF
xXsR0rn5e6LChkaFDsk+/G1DNua62EmRoUPmr/qT9WZEaNz8VS+JSF5BZmRofETIkP1HXJ4D7vqh
d4T2iF68/rWikpMP3fUXxxkOnciMCB0S3icu5+h2x6khPaI92tojJ7IiQuL694k9cCzdOvLdL54W
keGDbk4cnNw58Oote5aKyPSbnywtP/vekmdE5MbhM6cm/XTxule0aBeR/yx9RkSi+44YGz+tc2DX
tVs/EJHpEx8vLT/3/rLfikjSsBm33fDwovWv1l6s+mDZ77SltLT+YLl2U7l3yh9E5MPlz7YL6Dh5
3EMzb/n1p2te0t/+rl16JQyc2Lt7hJEHO2/Vc9bhjbsWzbj510NjJmipPDRmgohs3LXYdv75q59n
Nw8A4wFvG+SOYzwL6Ys5G3ct/cjQfQ+8PWrQFc7iZGqnDoHf7PjiQlmxiKzY8J7TxfNP5YhIdN+h
tiEtItW1leu2LZh+088nJM5sSD09ZsiUjh0CN+1aeqH8rIis3vyBd+sp+O6giESGxTcwpIcNnGB7
M2HgeOvw8dMHRUQ/pAdFjBKRopITrs4OcOJ0rohEhMQ6DWlPnTidJyJ2Ia3J2Lc2PjppYP+RW/Ys
jY0c17H9FV9tX6BNSt+3ZkbIk8OvvWVL5lLbRQ4eyxgbP63PNZEiMjjy+g7tr/g641Pr2qZPfGL4
tTdvrauzddRerNqaueyWUfdeFztFv56ePO6hau+O9bhYvTNnXcKAiT279ReRXt0jduasr71YzWcN
0Jq5ylT9Itt2Nm0NBufXC+nvVUVEkpOTV69eLSIpKSmpqanaJFVVbU/aoqoizg4wi+mbICIHju10
nDR70lMiMn/1X7QwLik906/3QCe5WHhQRPr2itFuTkicGRc9VkQyD276cvtCEZmV/Mue3cLeW2K5
UF7cJbDbfdMs3xXnL0j9q+1KosKGikhu/i7H9T/6w9dFpKS0KKhzcP6pA0vS3tbG/3zWa7bjl6a9
LSI1tZUlpUVhPS9tzCMzX928e/ngiFFXdQ7OLzywdc+KUUMmh/WMOV9atOSbd0rLz4rInElPX9U5
WETyCw+kZSwurTj7sx+8oi3+0x+88tZnT/z08s2/vvXZkzW1VefLikJ7Xi52H57+sohkH9oa0iPq
k9V/fmj6y9r4h+56+Z3FT9lV2IMirlu79eMjJ7POlxXbVcy3jp0b0iP6fFmx7cix8bdfGz5SRPYf
3rZp9xci0rt7ROLglO5Xh1woK165+b2yinM1F6sulBWH9Ihy9TqpqqkQkQH9RojIqaJD2leHsopz
2trsZo6NvF5EtC9tMX2Hi8iposPapLJK54u4Ulh0WMtO/dmOnty7NXP5rOTfePFu3Hd4S1TosJGD
bxWR0vKz+w9vEQpnAN6muxbMtvHstodc74xj339/UURWr16dkpKSkpKiRbX1ILLk5GS32xTUpbv1
E1mfFuRamjpZT+fu1oRe9+2Cxev/ERc9dkLiDBHJyF4nIrFRo61/07PXOyweLCJaGe3URyue/3L7
p2G9Ym4cPr3++Be+3L4wrFdMUt34vILdWqV7qUaPn7Jlz4oPlz8f1jNmxi1PfJ2x6MMVL1zVOXja
DQ9pM8xb9cc3Fz7+0YoXw3rGJI++R0Te/OwJbdJbnz1h/Ssib332pDZwqCBTRML7xNluyfHvcr/Z
8bmIvLPol9qYdxb/0nlCn8gSkcPHM7Xyt27q7SE9ojfs+Hzhmsvd4yMGJV8bPnLdt/NWbPz3wPCR
IwYli8iEkbO7Xx3y4bLnqmsr+3SP1OY8fCJLRPr1HmzXbnGR40Qk8+AGEelyZTfHhrUded/UF++b
+uKIQbdoRbPLRQK7evS6dzv/hp2Lai9WGVzbnEm/nzOp3s7pbXtXdg7s2jmw67a9K51810z53Q9T
fsenDwAvqnAj+7ANnRY0NTU1NTVVK521v9bM9tr8VX/RymhN/qkDthWzU9F9h4rI3rwtWnkd1Xeo
iOQW7K6sLo+NHCMisZFjqqrLtRz1VPahrSISFRavP167a9tK99DxPaV18V9aflYb1qpnEblh2F1z
p71wz+RnROSaroYuCVpw+qCI2FWuh09kad3OTt0x/pFBEdd9m7lSS2gROX46V0RCrrmUslrk2/V+
D+yfKCJHTu49eeaQiAzonygiNTWVItI5sOuStDet/dsnz+SJSJ+6tYnI/bf/8f7b/5g4OHnPwTTr
gWP6/rP0mf8sfSY9e42I9Osz2Oev/kHhY2be/KtB4WPaBXScduOj3q1k3qrnbHdLi0jx+ZPawNm6
gXov49XPc8gYgMajF9Jt2wZYi+bk5GSthtb+av3ebovpkgtnDG5HfuEBEYnum+BQJ3UTkcLiYyLS
qUOgiPxizj9+Mecf1psikpG9vlOHwAmJMzp2CLSW0Y/N/rv2T0RKSosMbkbHunW6Gq+FX1ToECNr
m3LDTwZHjk7L+OzNhU8Yf0q0MLYW68aqyW4i0scm17VYtZbjHTs4OWKgY/srHG+u3PTuhbLiOyY8
Mn7ErCuvuLpubYds63IRefeLpzfu/EJE2rfrpI1x2l/iODIrb6OIhPeJdbmI6w4PO1d2CpJL++ZF
RGIjx67Y+M/27TvNSv5Ndt4mX71Dbkq8u7qmsrqmckLi3XxeAGgIu/3QRnZLuz/jmLVoTklJEZvr
h2jj9S8ncuxUTlCX7tFhQw862x9s58DRHTH9htmVm1ptffDYLhGprC7v1CHw1XmPOHzub74+YWpc
1FgRycrboo18bf7Pbb8BBHUOjgyNzyvYo78NVdXlbsfn5u+KChva/eoQt49I23t96HimeLgnM69g
d2RofHBQH2sC6fv8y9dHxk6KDB0yoH9izpFL5fKhgj0RoUOCg3oXlZysqq5wzOmqmgrbnNZ2LZdV
nFu49uWYfonjEu7oc03kxysvlYmHj2eGh8R1u6r35efrWHr/kMED+488cmLvqaJDJ87kdbmyW6/g
CG0fc6/gcK1M19nsk2cOdbmyW6/gcNtFjuouYkvbG330ZLZ289O1fxaRXTnrd+Ws99U76trw0d2C
em/YuUhExiVMHxg+ev+RLXzQAP6dndI4P6ay3ovtgWPW48i8qaQ1Wke3oijWo8Zsx+svu2Hnksrq
8nEJ0zq06yQik8fNnThyljZp9qSnZqc8VT/RtWJ6qG2BOHbo1MLiYxn71otIevY6ERl+7U2DI0c/
NP2lMfFTtNmqayszczeJSGbuJqe/YN60e1lVdfmY+Nu0si9lzL3jR/zAbh7tkOnc/N1ux2s93pEG
ium9eVtEpHNgV+3gLBHpfEVXEamqrqj/DcD+2OPj3+V6VEyXVpxbv21+VXXFyMGT2rfrWFf0Xy6m
D5/IFJEB/RJtl9p/ZLuI9O89WDvmS0v3lDFzRwxKPnA03Wl9b1tMi8hX2xdU1VSMT5wlIhnZa6pq
KrRdziIyYtAtVTUVO/avtVvP6LjbpG4nd8a+tdU1FcMHXlpk+MBbqmsqduxfZ7CMHjZwYlHJiexD
XhbNKWMeSBnzgM4MgZ2CEgZMLC0/m1+4v6Bwf2n52YQBNwV24rLrQGtPdKf/DC5ujWSD3wP0KumA
NkYvZNlGUVTFyeHd1bWVH698aVzCtEdmvSIihUXHNhxc4molB4/tvHnUD2Pqerwfv/uNktIz6dnr
tIQWkYx96xWR4YMmduoQWFJ6Jiv3ck2Tlbs5LmpsVu5mp2uuqa1ckPrymPjbHp7+koh8V5y/eXe9
euieyb8L6hyclbv564xF9cf/VhuflrHIemHT3II94xNnRIbGu22Wb3Ys1layY9+Xe/O2Do4cddWV
3UorzqbtWJQ8+kfa0d0ikrZjcfLoe7Sjuy8Vwcf3JA2fHhEat23vKuMvnXXfzptyw4PjEu5cv32+
Fsw3DLszPCRue3bqxl1fdAnsOm7YnUNikqzzp2endmjXaeJ1c0Rk94G09OxUEck5su2m6+bExySd
OXd8/fZPrDMfOZF1fcId4fVDuuZi1VfbF0waO/fG4TO/zvh0adqb40fMmjvtRRE5fDwrdfP7tjNr
pzSpqqnIObJ9S+YyRaT2YtWyb96+cfjMH9/2gnYXqVs/MPJIfzTlDxfKz2blbfI6oV2xHjU2b9Vz
NyXeLSIb6n4YvXHX4kljH5wwYs6yDW9Y559dd9QYe6aBlst43dyQCttxWSNrU86fy+8SFJq9Z1vP
XkHvp75uO+2/K4JPHc1p27adm1XI/2rbh/QMzr9rajeD26q4vty52F2s2/BF6UX3GuquLkqv/QTr
7wsetZuq/QTr7wseuzxWcXGtdGdb7XzTRFxsh+HL2+telF7sr9uuc7l0d5da13sSRPei9PW3z3Wb
Ka4fn8cPTNxdV75uW3WuEa9zUXr9JveglR0ejuLFxhp5MHpvBecvTLevPlfvIP33l6HGNfj2Udy9
uZxvpf4Tphh/snXeh/p3o3j3LLlrFUV3GxWDSzg8HBfPk7s3l/6rWfclYLQdjXzm1mtd1xukKCIy
KvbuCyUFRi59kfb1N5u3pv/ttX97NL/1UpVeLBXdI7HwVElOzp7NW9P1KunoyPzgoA5u96aq0kbU
Ez16duTrGAAAPqQX0oMHXEEDAQBgxpBuDV7/5FFx1lGjdXQDAEBIAwDQpNatWd2o8zdkKUIaANB6
Pf7YA406f0OWIqQBAK2adhy1+e+lDU8VAADmVK+S/nHyo7QIAABmDOm0r7+hRQAAaC53zniw+PQB
5yEtIpu3ptNGAAA0PYvlWb1KWvPq6+/SUgAAmDGkPaVdYVpsrmLZSGvTJhm/F4Mb5nY2T++3uaiq
6qrR7LbfOtJuUmOPd/sUNHA7AcDP+ODobu8+Iu0+Zx3j0OkMjbFhPtx+n2x2A7/cOG1Px+RT6ljH
NPZ4/S13nNlX6wfM8jXaw2FAmut30m4/VZ0GZ3MVTDrlqRkSWn9jDPYiNPH4lv6VCPAuoVURxdgw
4DKkbTtI7T7oXXVLOi6oM79dqSTedofq9Hka+Uw30rnt0fbrPC5Pt9/ghmnDXleTJkloj559Ehr+
VE8bGY9Wro3xwtFVt6Ttgq66JZ1Gl22PpV3IOQaYq49y/W5SpyGnk2p2X0qc3q+r7dd/XK7ut7H7
bNU6HgVkY4/3tPT3yfoBwB9C2vZDsyk/BPWj0VfrdxXh0sgHiOkkZWO3qtMvAWbr6HbV+JTRAFqz
ALep5k/FimNfsd1ULUob7yuCCVvDDGW0/tcjymj4w4ePQ4e2ojsecF9JN4GmrC+t96XTvexpz7Or
7fd0vEffMHxS8TdXQjt2v9s9KQZ31ZPQaIk57dEwIPoHjtnVlNZC0+5T0vohazfJ1fx2k5zuk3a6
O9lI1eW4cmtxrL/9OhWe4/063X5X43XawYtkdbxTIxupsz2u5vf5eCPFtKvnseHrB8xTTyuGxwMB
HtUo+gf16BxjZWRVXt+v4wyuJhk5KMnt/F5UeJ5uv0cVsK82Upqko7tRtx9oWfW0kfFo5bhUJQAA
hDQAwIHFYrFYLI7DgOjvk7YyeDITszF+gJUXj8txEVcnG2nIxreUpgZgJIxtY5gwhpeVtOPvlW0P
PvK/wDBykhNXvGsQI3fhl00NAGhoSPsNgznXxHHIWTiAVltGOx0AGj2kVRuO4x2HvVuP9WyjduvU
md/u50mu5rcrqZugajeyPQAIaRDSbiLTSG756rqBTtdj2x3t9NzaTi+GYfxc375KaLcnG3E6nust
AhCHw8doEGjcnxbUeIHoq0Kz8eZvbE5PNtJkZTqAFl1kA55V0h4lZcP37Hq6Hl/dr9vi24dNxAsO
aOVJTLmMpg5pt7V4A0837eqszj7P0ca7WCQJDRDShDR8E9J2O4NdJZnj9Sqs59w2uHtYJ4yd/vTL
6fk7nc7v6QFrvop2V03n3c+02EsNAK2cD87dLe5OQ228lHS6Hp3FvT5Ht0dnkDbeFMZH+nx7ALS4
YhrwJqR9WGX6JHJ8eBUpAAAIaR+nKcEMAGiFuMAGAACENAAAIKQBACCkAQBAYzF0PWkAANDYLpQU
uA9pDqUGAKDpnT+XbzeG7m4AAEyKkAYAgJAGAACENAAAhDQAACCkAQAgpAH4kCqqKpx7AAAhDZgv
oe0GAICQBkyU0OQ0AO8E0ARAI1FEsWazNgwAVNIAABDSAACAkAYAgJAGAACENAAAcI2ju4HGxXHd
AKikAQAgpAEA8GsWsVjEQkgDQNNSVVFVlzeBupC2/iWkAaDJo9r6FzBxTnPgGIBWnNOAu5ymkgYA
wFzxbE3o5t0/TUgDaH0U5fJfwMQIaQCtOKcBQhoAABDSAAAQ0gAA+Cnr76+sR40117Fj/AQLQGti
tyuaPdPQzWnHYSppAABASAMAQEgDAABCGgAAQhoAABDSAAAQ0gAAgJAGAACENAAAhDQAACCkAQAg
pAEAACENAAAIaQAACGkAAEBIAwBASAMAAEIaAABCGgAAENIAAICQBgCAkAYAAIQ0AACENAAAIKQB
AAAhDQBACxFAE/gxVVTbm4ootAkAUEnDLAmtiKL9c8xsAAAhDQAAvNGI3d0WwyMBAECTVtKWun+2
8UxIAwDQ/JW0XSQTz01MEUUVVRVVGxAOHAMAQlocSmdqaAAAvMCBYwAAtNaQttQvqamnm4zjD674
CRYAtCxNdHQ32dz0bPdAszcaAKikAQAAIQ0AACENAAAIaQAAQEgDAEBIAwAAQhoAAEIaAAAQ0gAA
ENIAAICQBgAAhDQAAIQ0AAAgpAEAjiwWsVicDKMlC6AJAMALaWlp1uGkpCQaBFTSAGCihE5KStLi
2TawASppAGhOlM6gkgaAFlNSN/N2ON0DzW5pKmkAIKGbf1Ps8ph4ppIGAABU0gBgRibaM+2qdKak
JqQBoHUyb3c3/AXd3QAAUEkDgH/hh1igkgYAgJAGAACENAAAIKQBACCkAQAAIQ0AACENAAAIaQAA
QEgDAEBIAwAAQhoAAEIaAAAQ0gAAENIAAICQBgAAhDQAAIQ0AAAgpAEAIKQBAAAhDQAACGkAAAhp
AABASAMAQEgDAABCGgAAENIAABDSAACAkAYAgJAGAACENAAAhDQAACCkAQAAIQ0AACENAAAIaQAA
CGkAAEBIAwAAQhoA4KfS0tLS0tIIaQAAQEgDAEBIAwAAQhoAALgUQBMAAPyD3cFi1ptJSUmENAAA
zanlhrErdHcDAEBIAwAAQhoAAEIaAAAQ0gAAENIAAMAMTPQTLFVVRURRFKc3AQDN/TFtM8xnM5U0
AMBcCa3UxbNKi7TKkNYKaACAGRMaVNLkNACYmkJgt+KQJqcBADBjSHOkGACYmlr3D62zkianAcC8
+IRu5SFNTgOAGYOZ6pmQBgCYOqeJ6iZkopOZ2FXPFNMAYMacBpU0AAAgpAEAMKkAmgBWFovF6TAA
gEoazZ/QFovFOkCbAAAhDQAACGlQSQNAy8E+adjnNACAkEYLSGhiGwAIaVBGAwDssU8aAABCGgAA
ENIAABDSAACAkAYAgJAGAACENAAAIKQBAGhpOJkJ4FfS0tKcjk9KSqJxAEIaQHMijAF/Qnc3AABU
0gAaH93dACENwKQIY8Cf0N0NAAAhDQAACGkAAAhpAABASAMti8VCGwAgpAFyGgAhDYCcBkBIA36V
00Q1AEIaIKoB+BPOOAY0VUgDACENEM8A/APd3QAJDYCQBkhoACCkARIaACENAAAaCweOAWgZVFG1
AUUUbVgRhWYBlTQAmCKhtVQmoUElDQAmYo1kshlU0gBgukra2t3teBMgpAGg+aOaRgAhDQDkNEBI
A4BhtgeOAYQ0AJgxpwFCGgDIaYCQBgAADvidNICWVz1TTINKGgAAENIAAMD8Ia2qorbYn1dYLBaL
xWI74AdUVVXrnhLbYQBA6wpp6+c/QQAAgIlCWgtmRRFFaZE5bS2dHQdaNEVRFEVxHAYAtK5KukXz
15CWul5u+roBgJCGSYtprYYmpwGgyZjud9JEgDkraRoBAKikL++TbnH8tbtbS2j2RgMAId2C+fE+
aQAAIQ0zsu6KVlWV3dIA0JRMtE/atjPVb3q8/SmnHYcBAFTSAAAQ0mhwJW1bTLNPGgBASAMAQEgD
AABCGgAAQhoA4ILt1XNb9JV0QUhDY3f4GA0CAPBOAE3g23imEQAAVNIAABDSAACAkAYAc9HOg6sd
MmYdBpoK+6QBwEBOOw4DVNIAABDSrZp2HUbHYQAt920twhsZhDQAmJFSF9UAIQ0A5DTgaxw4BsDv
cxogpFss9kAD/vrmJq1BSLf8b9r8pgLw24S29nir5DQIaQAwbTENENIt8U1c191NSQ34Hd7UaNk4
uptsBgBQSQNAk9bQKseOgZAGANPmNNCy0d0NAACVtJm/b9vslmYXNQCAShoAABDSAAAQ0gAAgJAG
AICQBgAAhDQAACCkAQAgpAEAACENAAAhDQAACGkAAForzt0NU1PrrjTIKdUBUEkDpktoLZ5VlfYA
QEgDAABCGtBnW0PT3Q2gFWKfNEyK/m0AIKRh6jLaGtiqSjENgJAGKKYBwBzYJw1TJ7SiUEADIKQB
AAAhDRhhPbTbujea3m8ArQ37pGH2nHYcBgAqaQAAQEgDAABCGgAAQhoAABDSAAAQ0gAAgJAGAICQ
BgAAhDQAACCkAQAgpAEAACENAAAhDQAAmp/9VbAslmctlmdpFwAAzBXSd854kBYBAMCMIV18+gAt
AgCA6UK68FQJzQEAgLlC+vOF/6IhAAAwG+UXj95PKwAAYEL/DzxQwuj9DYYtAAAAAElFTkSuQmCC

--Boundary_(ID_W+IpNlhB8Ow38HdfGtNa9w)--