
Network Working Group P. Peterson
Internet−Draft robotfindskitten consortium
Intended status: Standards Track June 2009
Expires: December 11, 2009

Standard for robotfindskitten Zen Simulation Environments
rfk-rfc−00

Status of this Memo

By submitting this Internet−Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet−Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet−Drafts.

Internet−Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet−Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet−Drafts can be accessed at
http://www.ietf.org/ietf/1id−abstracts.txt.

The list of Internet−Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

Copyright © The Internet Society (2009).

Abstract

This is the abstract.

Peterson Expires December 11, 2009 [Page 1]

Internet−Draft robotfindskitten Standard June 2009

Table of Contents

1. Status of this Memo.. 3
2. Copyright Notice... 3
3. Introduction... 3
4. A Note on Alternative Designs.................................. 3
5. Terminology.. 4

5.1. ’robotfindskitten’.. 4
5.2. ’robot’ and ’kitten’...................................... 4
5.3. ’item’ or ’items’... 4
5.4. Non-kitten item... 5
5.5. Abbreviations... 5

6. Version Number... 5
7. Program Definition... 5
8. Instruction Screen... 5
9. Standard Interface... 6

9.1. Status.. 6
9.1.1. Success Message...................................... 6
9.1.2. Alternate Status Implementations..................... 7

9.2. Field... 7
10. Simulation Environment.. 8

10.1. robot.. 8
10.1.1. Appearance.. 8
10.1.2. Position.. 8
10.1.3. Color... 8
10.1.4. Movement.. 8
10.1.5. Identifying Items................................... 9
10.1.6. Finding Kitten...................................... 9

10.2. kitten and Non-kitten Items.............................. 9
10.2.1. Appearance.. 9
10.2.2. Position.. 9
10.2.3. Color... 10
10.2.4. Movement.. 10

10.3. Alternate Simulation Environments........................ 10
10.4. Screenshot... 10
10.5. Quitting... 11

11. Compliant Non-kitten Items.................................... 11
11.1. Introduction... 11
11.2. Programmatic Sources..................................... 12
11.3. Conformant NKIs.. 12

11.3.1. Unpredictability.................................... 12
11.3.2. Guidelines.. 12
11.3.3. Subjectivity.. 13

12. Acknowledgements.. 13
13. Website... 14
14. Security Considerations....................................... 14
15. Internationalization Considerations........................... 14
16. IANA Considerations... 14
Author’s Address.. 14

Peterson Expires December 11, 2009 [Page 2]

Internet−Draft robotfindskitten Standard June 2009

1. Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and Status of this protocol. Distribution of this memo is unlimited.

2. Copyright Notice

3. Introduction

robotfindskitten was originally designed and implemented by Leonard
Richardson in 1997 as a manifestation of the concept
’robotfindskitten’ as suggested by Jacob Berendes. Richardson’s
robotfindskitten was the winning (read: only) entry in the defunct
webzine Nerth Pork’s contest of the same name.

robotfindskitten is a zen simulation wherein a user plays the part of
robot whose only purpose is to find kitten in an environment. robot’s
task is complicated by many objects which are not kitten (non-kitten
objects or NKI) but which are indistinguishable from kitten without
direct inspection. Thus, the simulation experience consists of
navigating the environment, attempting to locate kitten, and finding
kitten (or barring that, quitting).

robotfindskitten is simple, and the canonical text only two-
dimensional interface is highly portable. For this and other reasons,
robotfindskitten has been ported to a variety of different hardware
and language platforms. At the time of writing, there are over 30
distinct versions of robotfindskitten with no end in sight. However,
lack of a standard has led to small but significant differences in
subsequent versions, each generation of which are further removed
from the original.

The vast majority of simulation characteristics have remained stable
since the original 1997 version and in the POSIX reference
implementation, including the name, version numbering, experience,
terminology, style of NKIs, notification method, etc. However, the
lack of a standard means that there is no way to identify what is or
is not robotfindskitten. Arguments, misunderstandings, and lengthy
correspondence can arise in the process of mediating these disputes,
which are sure to increase as robotfindskitten becomes more widely
distributed. The ad hoc gatekeepers of robotfindskitten cannot impose
their informal judgement on implementations without a standard. The
resulting disorder could ultimately dilute robotfindskitten and allow
for unfaithful simulation environments. We define the following
standard in the interest of avoiding these and other negative
outcomes.

4. A Note on Alternative Designs

This standard is based on and attempts to describe in detail
robotfindskitten via the original character-based implementation and

Peterson Expires December 11, 2009 [Page 3]

Internet−Draft robotfindskitten Standard June 2009

the extant reference implementation for the POSIX environment. The
character-based interface is by far the most popular and widespread.
However, the consortium desires to leave room in the standard for
alternative designs such as three-dimensional or raster-based
interfaces which may choose to implement certain elements of
robotfindskitten in a different manner.

This complicates the standard because certain design choices (for
example, how to represent robot) are technically open to
interpretation, but in character-based implementations there exists a
unanimous preference (#) that should be respected whenever possible.
As a result, this document attempts to describe the essential
elements of robotfindskitten -- those elements without which a
program is not truly robotfindskitten -- and the elements which are
merely strongly recommended (especially for character-based
interfaces) but which are not strictly required. It should be
understood that strong recommendations should be violated only in
special cases and when the implementor truly understands what he or
she is doing.

5. Terminology

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
document, are to be interpreted as described in [RFC2119].

5.1. ’robotfindskitten’

The name of the simulation MUST be spelled ’robotfindskitten’.
robotfindskitten is not a phrase or a proper noun, rather it is a
single word which attempts to reflect the generic universe within the
simulation. Accordingly, robotfindskitten MUST NOT contain spaces,
punctuation, capital letters, numbers, or any other characters. This
is true even if ’robotfindskitten’ is the start of a sentence and
would otherwise be capitalized in English. Translation or
transliteration to a foreign language MUST reflect this sensibility.

5.2. ’robot’ and ’kitten’

The entities ’robot’ and ’kitten’ are likewise not proper nouns
because they are not a particular robot or kitten but rather their
archetypical forms within the simulation. robot and kitten MUST
conform to the same character and translation guidelines as
’robotfindskitten’.

5.3. ’item’ or ’items’

In this document and in general, the word ’item’ is a typical English
noun which refers to any object within the simulation that is not
robot. In other words, ’item’ refers to objects which may or may not
be kitten. Kitten is an item, but robot is not.

Peterson Expires December 11, 2009 [Page 4]

Internet−Draft robotfindskitten Standard June 2009

5.4. Non-kitten item

A non-kitten item is any object, idea, entity, abstract concept, or
any other thing within the simulation that is not robot or kitten.
Accordingly, the word ’kitten’ in non-kitten item MUST NOT be treated
as a proper noun.

5.5. Abbreviations

robotfindskitten and non-kitten item MAY be respectively abbreviated
as rfk or RFK, and nki or NKI. Even though rfk and nki may be more
consistent, the consortium follows the English tradition of
capitalizing abbreviations and acronyms and because of cases (such as
pluralization) where rfk and nki could be confusing.

[Note: some might argue that robotfindskitten should be abbreviated
as ’r’, however it has historically been abbreviated rfk and the
consortium supports this use.]

6. Version Number

The version number of the simulation is the software version number
of the *current* implementation. The version number MUST follow this
format:

major.minor.num_nki

7. Program Definition

A compliant robotfindskitten implementation includes an Instruction
Screen followed by a Simulation Environment. In the RECOMMENDED
character-based implementation, the Simulation Environment is
interacted with through a Standard Interface. The simulation runs
until robotfindskitten or an OPTIONAL input is given.

8. Instruction Screen

All robotfindskitten implementations SHOULD display an instruction
screen prior to the first execution of the simulation environment.
The strongly RECOMMENDED instruction text contains the following
information in this order:

1. On one line: The word robotfindskitten followed by a version
number. (See ’Version Number’ below for more information.)

2. Author credit for this version of robotfindskitten and a
reference to the original robotfindskitten. (More than one line
is acceptable.)

3. Simulation instructions. (See below).

The instruction screen for the official POSIX version appears below:

Peterson Expires December 11, 2009 [Page 5]

Internet−Draft robotfindskitten Standard June 2009

robotfindskitten v1.7320508.406
By the illustrious Leonard Richardson (C) 1997, 2000
Written originally for the Nerth Pork robotfindskitten contest
In this game, you are robot (#). Your job is to find kitten. This task
is complicated by the existence of various things which are not kitten.
Robot must touch items to determine if they are kitten or not. The game
ends when robotfindskitten. Alternatively, you may end the game by hitting
the Esc key. See the documentation for more information.
Press any key to start.
[blank lines to fill the remaining screen space]

This instruction screen is RECOMMENDED rather than REQUIRED because
platform constraints could motivate a different design. If an
instruction screen is used, the RECOMMENDED instruction format and
text SHOULD be used.

The simulation is interacted with via an Interface immediately
following the Instruction Screen.

9. Standard Interface

The interface consists of the Status and the Field. There MUST NOT be
any additional elements.

In the RECOMMENDED character based simulation, the interface is a
text window (e.g. a text terminal) filling the available application
window and divided into two sections, the Status and the Field.

9.1. Status

The Status is the messaging interface between the user and the
simulation. In the RECOMMENDED simulation, the Status SHOULD consist
of a reserved space of three lines visible at the top of the
interface at all times.

In the RECOMMENDED Status, the first line SHALL display the version
number of the simulation at all times. The second line SHALL display
the non-kitten item robot has most recently touched or nothing if
robot has not touched any non-kitten items yet, and the third line
SHALL be a full line of underscore characters (’_’, ASCII decimal 95)
separating the Status from the field. The Status SHALL also
communicate a success message when robotfindskitten.

9.1.1. Success Message

The success message SHOULD contain an animation of robot and kitten
(where kitten is consistent in representation from the current
simulation) approaching one another in five frames (robot from the
left, kitten from the right). Each frame SHOULD be displayed for
approximately one second. The animation takes place in the rightmost
third of the Status and looks like this (where ’k’ is the current
kitten character):

Peterson Expires December 11, 2009 [Page 6]

Internet−Draft robotfindskitten Standard June 2009

FRAME DISPLAY
1. # k
2. # k
3. # k
4. #k

[heart]
5. #k
figure 1. Success Animation

The fifth frame with the ’heart’ character (which is printed in the
version number line) is OPTIONAL because the ’heart’ character is not
available on all platforms.

After the frame delay time has passed, the characters of the last
frame remain in place and a message is printed in the second line
(where item descriptions are normally printed). Regardless of Status
implementations, the success message MUST read "You found kitten! Way
to go, robot!" (without double quotes).

9.1.2. Alternate Status Implementations

Alternate Status implementations can be appropriate in certain
circumstances. To date, the two main reasons are constraint issues
and non-character-based implementations.

First, hardware/software constraints can require a relaxation of the
simulation specification. For example, screen space constraints (such
as on the PalmOS or Atari versions) have made the persistent Status
too costly to justify. In these cases, it is acceptable to omit or
modify the Status, for example to use a popup-style method for
communicating messages to the user.

Second, alternative implementation styles often lend themselves
towards a different design for the Status. For example, three-
dimensional implementations tend not to be character based and so the
Status described above may not be directly implementable. However, in
the only three-dimensional version to date, the author chose to
emulate the recommended Status format through the raster graphics
engine.

In any case, the Status MUST identify the items in the simulation and
display the success message upon the finding of kitten.

9.2. Field

The Field is the finite space which contains the Simulation
Environment. Accordingly, robot and all items exist within the Field,
and robot’s movement (see below) is limited to the confines of the
Field.

Peterson Expires December 11, 2009 [Page 7]

Internet−Draft robotfindskitten Standard June 2009

In the RECOMMENDED two-dimensional, character-based robotfindskitten
implementation, the Field size MUST be limited by the size of the
application window (that is, the field does not scroll within the
window). If the application window is resized, the Field SHOULD
resize to utilize the new window size.

10. Simulation Environment

The simulation environment MUST consist of robot, kitten, and a
variable number of discrete non-kitten items placed in the Field.
robot is navigated by a user through the Field in order to find
kitten. Items, including kitten, are stationary.

10.1. robot

10.1.1. Appearance

robot’s visible appearance MUST remain consistent between
simulations. In the RECOMMENDED character-based interface, robot MUST
be represented by a moveable ’#’ character (ASCII decimal 35).

10.1.2. Position

robot’s starting position is chosen at random (compliant with
guidelines restricting the positions of simulation items).

10.1.3. Color

If color is available, robot SHOULD be colored gray. robot MUST be
distinguishable from the background color.

10.1.4. Movement

robot can be moved throughout the Field in order to ’touch’ items in
order to determine their identity. In the traditional character-based
implementation, this is accomplished with arrow keys. However,
alternative implementations MAY use different input methods.

Regardless of input method, robot MUST be able to move up, down,
left, and right. It is STRONGLY RECOMMENDED that robot also be able
to move diagonally. It is OPTIONAL whether robot can "speed walk",
that is, walk as far in one direction as possible upon one input.

Regardless of implemented navigational directions and input method,
robot MUST NOT be able to walk through items. Some implementations
use a "destination selection" control scheme where the user clicks or
selects the location to which they want robot to travel.
Implementations which direct robot by the selection of a destination
MUST be careful to ensure that the path generated does not violate
item solidity.

Peterson Expires December 11, 2009 [Page 8]

Internet−Draft robotfindskitten Standard June 2009

10.1.5. Identifying Items

When robot is adjacent to an item (i.e., robot is in a space where
any further movement towards the object would result in a collision),
robot can identify the item by attempting to "bump" into it. For
example, in the RECOMMENDED character-based design, if robot is one
character to the left of a non-kitten item, any attempt to move right
MUST result in identifying that item. A message identifying the item
MUST be displayed in the Status as previously described.

10.1.6. Finding Kitten

When robotfindskitten, the simulation ends in success and the
previously described success sequence MUST be carried out.

The simulation ends after robotfindskitten.

10.2. kitten and Non-kitten Items

Non-kitten items are the items in the simulation which are not
kitten, and are described by a short text string. (See below for
more guidelines on non-kitten items.)

The number of non-kitten items SHOULD be configurable before the
start of a new simulation.

10.2.1. Appearance

Appearance of items (kitten and all NKIs) MUST NOT identify kitten in
any way. In addition, all items (including kitten) MUST be visible,
discrete, and not likely to be the same between simulations. In the
RECOMMENDED character-based implementation, each item MUST be
represented by a character selected pseudorandomly from the printable
character set. (As seen in figure 2 below.) In any case, their
appearance MUST NOT indicate in any way which item is or is not
kitten.

10.2.2. Position

All items (Non-kitten and kitten) SHALL be pseudorandomly distributed
throughout the Field at the beginning of a simulation. In any case,
their position MUST NOT indicate in any way which item is or is not
kitten.

There are two requirements for the pseudorandom distribution of non-
kitten items in the field:

Peterson Expires December 11, 2009 [Page 9]

Internet−Draft robotfindskitten Standard June 2009

1. There MUST NOT be destructive collisions. For example, if the
simulation is run with N items, it cannot be that two items
exist in the same space and so one overwrites the other or
combines with it. Each of the N items must appear within the
field.

2. There MUST NOT be any programmatic mechanism to restrict the
location of kitten in relation to items. In particular, this
means that it may not be possible for robot to find kitten in
some instances of the simulation. This is life.

Finally, if the Field is resized (e.g. due to resizing of the
application window), the items (and robot) MAY OPTIONALLY be
automatically moved to fill the new space in proportion to their
original positions. They SHOULD NOT be re-randomized in any way.

10.2.3. Color

If color is available, all items (kitten and non-kitten) SHOULD be
individually colored pseudorandomly from the available palette. All
items MUST be distinguishable from the background color. In any case,
their color MUST NOT indicate in any way which item is or is not
kitten.

10.2.4. Movement

All items are stationary during the simulation, with the exception of
the aforementioned proportional position changes after a resizing of
the Field.

10.3. Alternate Simulation Environments

Three-dimensional versions of robotfindskitten exist with alternative
(but conformant) representations. However, the canonical and
RECOMMENDED robotfindskitten simulation is a two-dimensional
environment using an ASCII representation. In such implementations,
robot MUST be represented by a ’#’ character (ASCII decimal 35) and
other items (kitten and non-kitten) MUST be represented by
pseudorandom, pseudounique characters from the printable character
set.

In three-dimensional implementations, the Field size and resize
mechanics SHOULD mimic the reference implementation whenever
possible.

10.4. Screenshot

The following is a black and white example of a robotfindskitten
simulation in progress. Note the Status in the top three lines,
followed by the Field below. robot is near the middle of the field,
close to an item represented by the ’t’ character.

Peterson Expires December 11, 2009 [Page 10]

Internet−Draft robotfindskitten Standard June 2009

figure 2. robotfindskitten ’screenshot’

+--+
|robotfindskitten v1.7320508.406 |
|The boom box cranks out an old Ethel Merman tune. |
|__|
| |
| i |
| e P 1 |
| ˆ ‘ |
| |
| |
|) |
|) |
| 0 |
| , |
| b . 9 |
| V t |
| # |
| |
| (H |
| |
| |
| |
| 4 |
| } |
| I |
+--+

10.5. Quitting

It is RECOMMENDED that the simulation have an interrupt method
whereby the user can quit the simulation if desired. If an interrupt
key is implemented, it is RECOMMENDED for historical reasons that the
Escape (ESC) key serve in this capacity along with any other desired
interrupt sequence such as ˆC, etc. Valid reasons for omitting an
interrupt method include embedded, single-purpose robotfindskitten
devices.

11. Compliant Non-kitten Items

11.1. Introduction

Non-kitten items can be anything that can be described or
communicated in 72 characters. This includes real objects, jokes,
ideas, abstract concepts, etc. In concert with unpredictability, the
ability of NKI to be essentially any kind of information is central
to the zen simulation experience.

Each non-kitten item MUST be described by a static string drawn from
a pool of item descriptions.

Peterson Expires December 11, 2009 [Page 11]

Internet−Draft robotfindskitten Standard June 2009

11.2. Programmatic Sources

These descriptions SHOULD come from a static, external source in
order to facilitate the addition and subtraction of custom non-kitten
items without recompilation. Early versions of robotfindskitten used
an embedded, hard-coded NKI list. This design is deprecated. There is
no standard format for the NKI file, although a user-friendly format
(such as plain text) is RECOMMENDED.

The individual descriptions and the collection of descriptions for
any given simulation instance have additional requirements (see
below).

11.3. Conformant NKIs

A core element of robotfindskitten is total unpredictability within
the scope of the simulation. Earlier requirements in this standard
have focused on keeping kitten’s location and identity unpredictable.
However, an additional requirement is that non-kitten items
themselves *be* unpredictable.

11.3.1. Unpredictability

In a very real sense, it is the unpredictable and "infinite"
possibilities of non-kitten items that drive the fidelity of the zen
simulation. As a result, the fidelity of the simulation is inversely
proportional to the predictability of the identity of kitten. As the
number of high-quality, unpredictable non-kitten items increases, the
chance that you have recently encountered any specific or similar
items decreases (unless you always run the simulation with nearly the
same number of non-kitten items as the pool size). In other words, as
non-kitten items become more predictable, the less faithful (and
satisfying) the simulation becomes.

Figure 3. Relationship between Predictability and Fidelity

1
-------------- = Fidelity
Predictability

As a result, the fidelity of the simulation depends not so much on
the number of non-kitten items in the field, but rather on the number
of substantially unique non-kitten items. In fact, similar non-kitten
items have a multiplicative and negative effect on the fidelity of
the simulation and must be strictly avoided.

11.3.2. Guidelines

The following guidelines exist:

1. The identities of NKI MUST NOT be predictable or be overly
similar to any other NKI. This ensures that the operator of the
simulation will not regularly encounter similar NKI. This

Peterson Expires December 11, 2009 [Page 12]

Internet−Draft robotfindskitten Standard June 2009

precludes the creation of classes of similar items (e.g., Hardy
Boys book titles or Tom Waits albums). As a rough guideline, any
NKI should be substantially similar to less than 1% of the total
NKI pool in the simulation by subject, and less than perhaps 4%
of the pool by style or form (i.e., a pun, an almost-kitten, a
math reference, etc.).

2. Non-kitten items SHOULD NOT include current popular culture
references. Not only are they unlikely to age well, but they
are, by definition, inherently more predictable by virtue of
being well known. Similarly, non-kitten items SHOULD NOT include
vanity references or self promotion.

3. Non-kitten items SHOULD NOT break the illusion of the
simulation. While a non-kitten item can represent virtually
anything and be phrased in any way, it SHOULD communicate
something to the user of the simulation. In other words, NKI can
be obscure, but they SHOULD NOT be nonsense. The illusion of the
simulation can be broken by nonsense or by too many similar NKI
because the simulation begins to feel like a meaningless in-
joke.

4. It is possible that some NKI are required to be similar for the
purpose of a larger goal. For example, a hypothetical NKI might
be "It’s John Denver’s left boot." Another NKI could be "It’s
John Denver’s right boot." These two NKI function individually
but also as a single, meta-NKI. This is acceptable as long as
the meta-NKI is not overly similar to other meta- or simple NKI
(e.g. more NKI involving boots). Ultimately, meta-items should
be developed with caution; the simulation is about finding
kitten, not understanding or inventing complicated meta-items.

NOTE: Some NKI in the robotfindskitten reference implementation may
break these rules (especially in regards to vanity or self-
promotion). These NKI are left in the official distribution for
historical reasons.

11.3.3. Subjectivity

The robotfindskitten consortium recognizes that the non-kitten item
guidelines are somewhat subjective. Additionally, since new
implementations and NKI lists regularly appear and NKI should be
user-editable, there is no way to control the quality of NKI used in
individual installations. However, the consortium reserves the right
of editorial control over NKI packaged with the reference
implementation of robotfindskitten or with implementations that wish
to be recognized as compliant with this standard.

12. Acknowledgements

The author wishes to acknowledge the pioneers of robotfindskitten,
Leonard Richardson (original author and designer) and Jacob Berendes
(inspiration). Additional acknowledgements are due to the POSIX

Peterson Expires December 11, 2009 [Page 13]

Internet−Draft robotfindskitten Standard June 2009

developers and contributors of robotfindskitten implementations and
various rfkiana, who are too legion to name.

13. Website

http://www.robotfindskitten.org/

14. Security Considerations

No security considerations are addressed by this memo.

15. Internationalization Considerations No internationalization
considerations are addressed other than those regarding Unicode
character sets and robotfindskitten implementations.

16. IANA Considerations

This memo adds no new IANA considerations.

Author’s Address

Peter A. H. Peterson
robotfindskitten consortium

Telephone: 310-924-2425
Email: pedro@robotfindskitten.org
URL: http://robotfindskitten.org/

Full Copyright Statement

Copyright © The Internet Society (2009).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Peterson Expires December 11, 2009 [Page 14]

Internet−Draft robotfindskitten Standard June 2009

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on−line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf−ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Peterson Expires December 11, 2009 [Page 15]

	1. Status of this Memo
	2. Copyright Notice
	3. Introduction
	4. A Note on Alternative Designs
	5. Terminology
	5.1. 'robotfindskitten'
	5.2. 'robot' and 'kitten'
	5.3. 'item' or 'items'
	5.4. Non-kitten item
	5.5. Abbreviations
	6. Version Number
	7. Program Definition
	8. Instruction Screen
	9. Standard Interface
	9.1. Status
	9.1.1. Success Message
	9.1.2. Alternate Status Implementations
	9.2. Field
	10. Simulation Environment
	10.1. robot
	10.1.1. Appearance
	10.1.2. Position
	10.1.3. Color
	10.1.4. Movement
	10.1.5. Identifying Items
	10.1.6. Finding Kitten
	10.2. kitten and Non-kitten Items
	10.2.1. Appearance
	10.2.2. Position
	10.2.3. Color
	10.2.4. Movement
	10.3. Alternate Simulation Environments
	10.4. Screenshot
	10.5. Quitting
	11. Compliant Non-kitten Items
	11.1. Introduction
	11.2. Programmatic Sources
	11.3. Conformant NKIs
	11.3.1. Unpredictability
	11.3.2. Guidelines
	11.3.3. Subjectivity
	12. Acknowledgements
	13. Website
	14. Security Considerations
	15. Internationalization Considerations
	16. IANA Considerations

